May 10, 2015

White spots on Ceres may be salt

The first big surprise as the Dawn spacecraft was approaching the dwarf planet Ceres earlier this year were bright white spots on its surface. Now that Dawn has been orbiting Ceres for six weeks, a theory has emerged about what the spots are: salt.

Dr. Tom McCord, a planetary physicist who is co-investigator on
the Dawn mission, spoke about the exploration of Ceres Saturday
during an Astronomy Day event at the Pacific Science Center
in Seattle. Photo: Greg Scheiderer.
Dr. Tom McCord, a co-investigator on the Dawn mission and director of the Bear Fight Institute, a research organization based in Winthrop, Wash., spoke at an Astronomy Day event Saturday at the Pacific Science Center in Seattle. Here’s why he thinks the spots could be salt.

McCord explained that Ceres is differentiated: it has a rocky core, a water-ice mantle layer, and a dirty crust. He noted that they’ve learned a lot from the early photographs.

“There’s a lot of evidence of activity; many craters, an older surface, but not as old as the object, so something obliterated the craters from early on,” McCord said. “Distorted features, so the surface had to have been warped.”

“There are domes, things pushing out from the inside,” he continued, “and bright spots that suggest that material from inside has come to the surface in some sort of volcanism.”

In addition, McCord explained that ground-based telescopes have detected water vapor that comes and goes in the area of Ceres. Liquid water from the interior of Ceres may be being ejected to the surface, where it wouldn’t last long.

This image was taken by NASA’s Dawn spacecraft of dwarf
planet Ceres on Feb. 19 from a distance of nearly 29,000
miles (46,000 kilometers). It shows that the brightest spot
on Ceres has a dimmer companion, which apparently lies
in the same basin.
Photo: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.
“What that would do is leave a residual salt deposit, so these bright spots could be salt deposits that accumulated around vents—volcanos—where the water is coming through,” McCord speculated.

He stresses that the work on data from Ceres is still in its early phases, joking that, “We scientists don’t know entirely what we are seeing.”

McCord said the evidence of geological activity has been the most interesting finding so far at Ceres.

“It has been active and may well still be active today,” he said. “That’s exciting to a physicist because you really want to know whether these processes that you conjure up in your models really have happened and, we hope to learn, to what extent and over what time scale.”

Ceres is a great target for study because it may hold clues to how planets form. It is the only dwarf planet in the inner solar system and is the largest object in the asteroid belt. With a diameter of 590 miles, it’s about as big as Texas.

“This is a very large small planet,” McCord said. Ceres comprises about a third of the mass of all objects in the asteroid belt.

The Dawn spacecraft is unique, according to McCord.

“It is the only interplanetary spacecraft that uses ion propulsion, and that is the only reason we are able to orbit two different objects in the outer solar system and still have enough fuel to go on,” he said. Dawn launched in 2007 and studied the asteroid Vesta for 14 months in 2011 and 2012 before heading to Ceres.

“Dawn is really a pathfinder for this kind of multiple-object extended exploration,” McCord said.

Dawn will be collecting data at Ceres for another year to 18 months. McCord said the spacecraft has four momentum wheels and needs three of them to hold itself in stable position. However two of the wheels have failed, so mission scientists are using the craft’s thrusters as a substitute. The hydrazine fuel will eventually run out, and Dawn will tumble about in a stable orbit around Ceres for a long, long time.

No comments:

Post a Comment