October 23, 2017

APOD: more than just pretty pictures

The Astronomy Picture of the Day is more than just a pretty photo. In fact, each of the featured images may well have more than a thousand words packed into it. You just need to drill down deeper into the site.

John McLaren, a NASA Solar System Ambassador and treasurer of the Seattle Astronomical Society, gave a presentation about APOD at the society’s meeting last week. He said the key to finding a wealth of information about celestial objects is dragging your eyes away from the pretty pictures long enough to notice the explanation of the photo and, more importantly, the submenu below it. McLaren uses this information when preparing presentations about astronomy for various groups.

“You can build a more complete story,” he explained. “There are good links here for education, for outreach, and home-schooling groups.”

You’ve probably noticed that the explanations of the photos use plenty of links to further information. Below the explanation there’s typically a set of “more on” links about objects or content. The real prize, though is in the index, a fully searchable listing of what’s on the APOD site.

That’s a lot of stuff. McLaren noted that the site was started by Robert Nemiroff and Jerry Bonnell when both worked at the Goddard Space Flight Center. The first posts were in June of 1995, and there have been more than eight thousand of them since. McLaren pointed out that when you look at the site, it is very 1995. There’s no flash or fancy moving menus. It’s pretty straight HTML, and the authors figured that changing things would run the risk of breaking a zillion links to APOD information.

The Earth from Apollo 17
Picture Credit: NASA, Apollo 17, NSSDC
They don’t update the photos published, either. Clicking on each photo gives you the best version of it that they have. The one at left, a photo of Earth taken from Apollo 17 in 1972, was posted in the first week of APOD’s operation. When McLaren showed this photo on the big screen during his presentation, there was some laughter about its low resolution. He reminded us that in 1995 we were probably dialing in to the Internet with a 2400 baud modem, and that wouldn’t deliver the high-res goods in the manner to which we’ve become accustomed in our broadband world.

Click the “archive” link on each page and you’ll find a long scroll, day by day, of every APOD ever. The “index” link takes you to a menu of stars, galaxies, and nebulae, solar system objects, space technology, people, and the sky. Clicking on these will give you a handful of “editors’ choice” photos they consider to be the most educational on the chosen subject.

McLaren found this photo, the APOD of October 20, 2002, of the space shuttle docked with the Russian Mir space station in 1995. It made him wonder who took it. Was it the first known selfie?

The Space Shuttle Docked with Mir. Credit: Nikolai Budarin,
Russian Space Research Institute, NASA
“Since it was the first docking, they wanted to get good information about how the two spacecraft functioned together,” McLaren explained. “So one of the Soyuz crews on Mir actually undocked their Soyuz spacecraft, did a fly-around, and observed the combination.” All of that was found by following the links on the photo page.

Astrophotographers who aspire to be published on APOD may well wish to check out its index of Messier objects. McLaren points out that many of the objects in the index are represented by numbers, not pictures.

“They don’t have photos of all the Messier objects posted yet, so if you submit a good color picture of them you may get your photo as the astronomy photo of the day,” he noted, which could lead to fame and fortune or at least bragging rights.

The search engine for the index is useful. Type in “Saturn rings” and it will find 200 items.

“There’s a wealth of information in there if you’re looking for something,” McLaren said.

So the next time you’re checking out the Astronomy Picture of the Day, remember that there’s a whole lot of knowledge lurking beneath those gorgeous photos.

October 4, 2017

Seeing the invisible and finding aliens using polarimetry

The topic line for last week’s gathering of Astronomy on Tap Seattle was What the Hell is Polarimetry?, and it seemed that a significant portion of the audience at Peddler Brewing Company in Ballard shared the question.

UW postdocs Jamie Lomax and Kim Bott explained that when light starts from its source the oscillation of its wave—its “wiggle”—goes in all directions until an interaction with something makes it polarized.

“That just means that it’s wiggling in one direction,” Lomax noted. “There’s a preferred plane for that wiggle to happen in, and in polarimetry what we’re doing is measuring that preferred plane and we’re looking for light that has been polarized.”

“It can help you figure out the shape of things without having to resolve the object,” Bott added.

Polarimetry and massive stars

Jamie Lomax
Lomax studies massive stars and has found use for polarimetry in her work. She gave a talk titled, “Seeing Invisible Circumstellar Structures.”

“The holy grail for us in massive star research is to be able to take a massive star at the beginning of its lifetime, figure out how massive it is,” Lomax said, “and map out what its life is going to look like and figure out what supernova it’s going to end its life as.”

“It turns out that is really hard, and it’s complicated by the fact that most massive stars are probably in binary systems,” she added. Since about two-thirds of massive stars are part of a binary system, one might expect that two-thirds of core-collapse supernovae would be from such systems.

“There’s a problem, and that is we’ve only seen maybe two or three core-collapse supernovae where we have evidence that suggests that it’s come from a binary star,” Lomax said.
Part of the problem, she said, is that we don’t yet know enough about the evolution of binary star systems.

“We can try to hammer out the details of how that mass is transferring between the two stars and when the system is losing material to try to figure out how that effects its future evolution,” Lomax said. “Once we start answering questions like that we can start to tease out why we aren’t seeing all of these binary supernovae we think we should be seeing.”

Lomax talked about the star Beta Lyrae, a binary system. The primary star in the system is losing mass that gets gobbled up by the secondary. This transfer of mass also forms a thick accretion disk of gas around the secondary—so thick light from the actual star can’t get through. There’s also evidence that there are jets shooting out of the system, but we don’t know where they are.

“These are all features that we can’t see very well,” Lomax said. “We can’t see the mass transfer stream between the two stars, we can’t see the jets.”

Here’s where polarimetry comes in. If a star is surrounded by a cloud of gas or dust that is circularly symmetrical, when the starlight interacts with that material the light becomes polarized, and the wiggles line up tangentially with the edge of the disk. If the cloud is elongated in some way, the wiggles form in a “preferred” direction.

“That preferred wiggle direction is 90 degrees from the direction of the elongation of the disk, so you can back out geometric information pretty quickly,” Lomax said. “Just by looking at how the light is wiggling I can tell you how the disc is oriented on the sky.”

Lomax figures that if you don’t do polarimetry you’re throwing out free information.

“You can see invisible things—to you—and that gives you extra information about what’s going on in different systems.”

Exoplanets and aliens

Bott’s talk was titled “The Polarizing Topics of Aliens and Habitable Planets.” She studies exoplanets and said polarimetry comes in handy.

“Stars don’t produce polarized light, which is really great if you’re trying to look at something dim like a planet,” she noted. The polarimeter will simply block out the starlight. There are then a number of things that might be spotted on the planet:
  • Glint from an ocean
  • Rayleigh scattering
  • Clouds and hazes
  • Rainbows
  • Biosignatures of gases in an atmosphere
  • Chiromolecules

Kim Bott
These can help astronomers characterize a planet, judge its potential habitability, and even determine if life might already be flourishing there.

Bott said that polarimeters that are sensitive enough to study planets are a recent advance, and they’re studying big, bright planets to get the hang of it. Looking for rainbows can be revealing about liquids in the atmosphere of a planet.

“The light will bend in the droplets at a slightly different angle depending what the droplet is made out of,” Bott said, so they can tell whether its water, methane, or sulfuric acid.

“We’re trying to create these really robust models that will take into consideration polarized light from Rayleigh scattering in the atmosphere as well as from rainbows,” Bott said, “and if you have a planet where you can see the surface you’d be able to see the signature from glint as well.”

Since different substances bend light at different angles, we can also learn a lot by watching closely as planets move through their phases as they orbit their host stars.

“On Earth we have light going from air and bouncing off of H2O water,” Bott said. “That’s going to produce a maximum in polarized light at a different angle than on, say, Titan, where you have light going from a methane atmosphere and then bouncing off of a hydrocarbon ocean.”

“We can actually, in theory, tell what the ocean and atmosphere are made out of by looking at where, exactly, in the orbit we see this glint,” Bott explained.

As for aliens, life requires more complex molecules, chiromolecules, that are “wound” in a certain direction, like our own DNA. Such molecules would produce circularly polarized light, which if detected could be a sign that such molecules exist on the planet.